新科学想法 文献管理 浏览文献

有读书笔记有附件How does multiple testing correction work

xbinbzy 添加于 2013-6-24 09:52 | 2454 次阅读 | 0 个评论
  •  详细资料

    • 文献种类:期刊
  •  xbinbzy 的文献笔记  订阅

    文章以简单的篇幅介绍了multiple test中的校正策略:1)Bonferroni, P-values; 2)FDR;3)q-values。
    计算p-value的策略:(1)通过随机模拟得到Empirical distribution,基于此计算p-value;(2)估计参数获得理论分布,然后计算对应值的p-value。
    由于“This is because the P-value is only statistically valid when a single score is computed.”,为此对于mutliple test,需要进行校正。校正的策略有:
    (1)Bonferroni adjustment:其作用在于“Practically speaking, this means that, given a set of CTCF sites with a Bonferroni adjusted significance threshold of a=0.01, we can be 99% sure that none of the scores would be observed by chance when drawn according to the null hypothesis.”
    (2)Rather than saying that we want to be 99% sure that none of the observed scores is drawn accoding to the null, it is frequently sufficient to identify a set of scores for which a specified percentage of scores are drawn according to the null.This is the basis of multiple testing correction using FDR estimation.FDR的产生,FDR的计算有多种不同的方式。如果是empirical null distribution,则利用Snul/Sobs计算;如果是analytical null model,利用Benjamini-Hochberg procedure计算P-value,还有其他的计算方法。
    (3)q-value的出现是为了解决FDR本质的问题:The q-value is motivated, in part, by a somewhat unfortunate mathematical property of the FDR: when considering a ranked list of scores, it is possible for the FDR associated with the first m scores to be higher than the FDR associated with the first m+1 scores.
管理选项: 导出文献

评论(0 人)

facelist doodle 涂鸦板

Copyright;  © 新科学想法 2016-2017   浙公网安备 33010202000686号   ( 浙ICP备09035230号-1 )