|

楼主 |
发表于 2011-1-13 16:18:16
|
显示全部楼层
相比其他DNA与蛋白相互作用的研究工具,ChIP的突出优势在于通过检测蛋白(in vivo)与DNA的物理结合,研究体内真实情况下的染色质结构,因此得出确凿的诱导或阻碍转录的证据,这对构架信号调控网络至关重要。同时,通过此工具也可以区分转录调控的直接作用和非直接作用[21],从而使研究者对转录调控过程有更精确而深刻的认识。
ChIP试验的结果示例[6]
基于上述的技术优势,ChIP首先被用来研究分子层面上的调控机制,区别于其他研究转录调控相关性的实验手段。这类分子机制研究多数是关注于DNA结合位点是否为启动子区或其他转录调控位点。例如,癌基因myc上游调控机制的研究非常之多,然而大多停留于假说阶段。Sotelo等人[20]于近期首先发现转录因子Tcf-4和β-catenin共同上调c-Myc基因调控因子enhance E的表达,然而luciferase reporter实验结果仅能证明β-catenin和转录因子Tcf-4与enhance E的相关性,无法提供证据表明这两种细胞因子如何作用于enhance E基因上。因此,他们采用了ChIP技术,证明前列腺癌LnCAP细胞中是Tcf-4而不是β-catenin直接结合到enhance E基因上,这就表明Tcf-4直接参与到enhance E的调控中。此结果与Hatzis等人[25]对直肠癌细胞系LS174T做的ChIP-CHIP测得的结果一致,证实了一直以来研究者关于myc存在远端增强子的猜测。类似地,有研究表明β-catenin与FGF2相互作用,影响神经干细胞增殖或分化,然而具体如何协同调控增殖或分化进程尚未知,直到Israsena等人[10]用ChIP试验证明了β-catenin仅在FGF2存在时与neurogenin启动子直接结合,从而调控FGF2下游信号通路。这就解释了FGF2在该信号通路中的主导作用。另一种常见的分子机制研究则是关注于DNA结合位点下游的基因,用此类基因的表达活化或抑制来解释表型上的差异。例如,Seo等人[26]采用ChIP技术分析了NeuroD结合位点的下游基因,发现了多个转录调控因子,因此得出结论,NeuroD则位于该神经发育调控网络的重要位置。
其次,ChIP也往往被用来验证其他DNA-蛋白质相互作用研究方法所得的结果。由于其他研究方法并非在体内(in vivo)实现或者尚不能得出确切结论,因此需要ChIP试验进行有力的支持。有研究[6]通过WB, MSP,EMSA等技术发现乳腺癌细胞的高度恶性与抑制肿瘤转移相关的TFPI-2基因启动子区过度甲基化有关,之后用ChIP试验则证实了该区域高度甲基化后确实转录水平因此受到影响,为上述的结论提供更充分的论据。类似的,Peng等人[13]用EMSA技术得出水稻转录因子OsLFL1结合于Ehd1基因的启动子区的初步结论后,采用ChIP在体内重复出了这个结果,因此最终能确定该转录因子的结合位置。
最后,ChIP是染色质结构改变,特别是组蛋白修饰后,研究全基因组活化或抑制作用的少数工具之一。ChIP可以针对乙酰化或者甲基化的组蛋白,富集该区域的DNA,因此可以进行基因组的多样性分析。2008年,Xiang等人[7]发现硒(Se)处理与前列腺癌细胞的DNA甲基化水平降低、组蛋白乙酰化水平升高、GSTP1(前列腺癌相关蛋白)活化有关。试验中,他们用ChIP技术富集了乙酰化H3-k9和甲基化H3-K9,对分离获得的DNA进行多个基因的PCR扩增。结果显示GSTP1基因在处理组和非处理组之间有显著差异,这表明Se处理的癌细胞GSTP1启动子相关的H3-K9乙酰化水平提高、H3-K3甲基化水平降低,预示Se可能具有调节染色质表观结构的功能。
(密理博) |
|