新科学想法 学术文库 学术文献 浏览文献

An Adaptive Method for Recovering Image from Mixed Noisy Data

yweirt 添加于 2009-10-25 20:58 | 3029 次阅读 | 0 个评论
  •  作 者

    Liu J, Huan Z, Huang H, Zhang H
  •  摘 要

    Abstract   In this paper, we present a new version of the famous Rudin-Osher-Fatemi (ROF) model to restore image. The key point of the model is that it could reconstruct images with blur and non-uniformly distributed noise. We develop this approach by adding several statistical control parameters to the cost functional, and these parameters could be adaptively determined by the given observed image. In this way, we could adaptively balance the performance of the fit-to-data term and the regularization term. The Numerical experiments have demonstrated the significant effectiveness and robustness of our model in restoring blurred images with mixed Gaussian noise or salt-and-pepper noise.
  •  详细资料

    • 文献种类: Journal Article
    • 期刊名称: International Journal of Computer Vision
    • 期刊缩写: Int J Comput Vis
    • 期卷页: 2009  85 2 182-191
    • ISBN: 0920-5691
  • 学科领域 工程技术 » 测绘科学

  •  标 签

  • 相关链接 DOI URL 

管理选项: 导出文献|

评论(0 人)

facelist doodle 涂鸦板

Copyright;  © 新科学想法 2016-2017   浙公网安备 33010202000686号   ( 浙ICP备09035230号-1 )